- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Jun, Martin_B_G (1)
-
Kim, Eunseob (1)
-
Mun, Daeseong (1)
-
Yun, Huitaek (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study introduces a non-invasive approach to monitor operation and productivity of a legacy pipe bending machine in real-time based on a lightweight convolutional neural network (CNN) model and internal sound as input data. Various sensors were deployed to determine the optimal sensor type and placement, and labels for training and testing the CNN model were generated through the meticulous collection of sound data in conjunction with webcam videos. The CNN model, which was optimized through hyperparameter tuning via grid search and utilized feature extraction using Log-Mel spectrogram, demonstrated notable prediction accuracies in the test. However, when applied in a real-world manufacturing scenario, the model encountered a significant number of errors in predicting productivity. To navigate through this challenge and enhance the predictive accuracy of the system, a buffer algorithm using the inferences of CNN models was proposed. This algorithm employs a queuing method for continuous sound monitoring securing robust predictions, refines the interpretation of the CNN model inferences, and enhances prediction outcomes in actual implementation where accuracy of monitoring productivity information is crucial. The proposed lightweight CNN model alongside the buffer algorithm was successfully deployed on an edge computer, enabling real-time remote monitoring.more » « less
An official website of the United States government
